A debris disk (American English), or debris disc (Commonwealth English), is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris disks are found around stars with mature planetary systems, including at least one debris disk in orbit around an evolved neutron star. Debris disks can also be produced and maintained as the remnants of collisions between planetesimals, otherwise known as asteroids and comets.
As of 2001, more than 900 candidate stars had been found to possess a debris disk. They are usually discovered by examining the star system in infrared light and looking for an infrared excess beyond that emitted by the star. This excess is inferred to be radiation from the star that has been absorbed by the dust in the disk, then re-radiated away as infrared energy.
Debris disks are often described as massive analogs to the debris in the Solar System. Most known debris disks have radii of 10–100 astronomical units (AU); they resemble the Kuiper belt in the Solar System, although the Kuiper belt does not have a high enough dust mass to be detected around even the nearest stars. Some debris disks contain a component of warmer dust located within 10 AU from the central star. This dust is sometimes called exozodiacal dust by analogy to zodiacal dust in the Solar System.
Other exoplanet-hosting stars, including the first discovered by direct imaging (HR 8799), are known to also host debris disks. The nearby star 55 Cancri, a system that is also known to contain five planets, also was reported to have a debris disk, but that detection could not be confirmed. Structures in the debris disk around Epsilon Eridani suggest perturbations by a planetary body in orbit around that star, which may be used to constrain the mass and orbit of the planet.
On 24 April 2014, NASA reported detecting debris disks in archival images of several young stars, HD 141943 and HD 191089, first viewed between 1999 and 2006 with the Hubble Space Telescope, by using newly improved imaging processes.
In 2021, observations of a star, VVV-WIT-08, that became obscured for a period of 200 days may have been the result of a debris disk passing between the star and observers on Earth.Carpineti, Alfredo, Giant Star Obscured By Mysterious "Dark, Large, Elongated" Object Spotted By Astronomers, IFL Science, June 11, 2021 Two other stars, Epsilon Aurigae and TYC 2505-672-1, are reported to be eclipsed regularly and it has been determined that the phenomenon is the result of disks orbiting them in varied periods, suggesting that VVV-WIT-08 may be similar and have a much longer orbital period that just has been experienced by observers on Earth. VVV-WIT-08 is ten times the size of the Sun in the constellation of Sagittarius.
Typical debris disks contain small grains 1–100 Micrometre in size. Collisions will grind down these grains to sub-micrometre sizes, which will be removed from the system by radiation pressure from the host star. In very tenuous disks such as the ones in the Solar System, the Poynting–Robertson effect can cause particles to spiral inward instead. Both processes limit the lifetime of the disk to 10 Myr or less. Thus, for a disk to remain intact, a process is needed to continually replenish the disk. This can occur, for example, by means of collisions between larger bodies, followed by a cascade that grinds down the objects to the observed small grains.
For collisions to occur in a debris disk, the bodies must be gravitationally perturbed sufficiently to create relatively large collisional velocities. A planetary system around the star can cause such perturbations, as can a binary star companion or the close approach of another star. The presence of a debris disk may indicate a high likelihood of Exoplanet orbiting the star. Furthermore, many debris disks also show structures within the dust (for example, clumps and warps or asymmetries) that point to the presence of one or more exoplanets within the disk. The presence or absence of asymmetries in our own trans-Neptunian belt remains controversial although they might exist.
Epsilon Eridani | K2V | 10.5 | 35–75 | |
Tau Ceti | G8V | 11.9 | 35–50 | |
Vega | A0V | 25 | 86–200 | |
Fomalhaut | A3V | 25 | 133–158 | |
AU Microscopii | M1Ve | 33 | 50–150 | |
HD 181327 | F5.5V | 51.8 | 89-110 | |
HD 69830 | K0V | 41 | <1 | |
HD 207129 | G0V | 52 | 148–178 | |
HD 139664 | F5IV–V | 57 | 60–109 | |
Eta Corvi | F2V | 59 | 100–150 | |
HD 53143 | K1V | 60 | ? | |
Beta Pictoris | A6V | 63 | 25–550 | |
Zeta Leporis | A2Vann | 70 | 2–8 | |
HD 92945 | K1V | 72 | 45–175 | |
HD 107146 | G2V | 88 | 130 | |
Gamma Ophiuchi | A0V | 95 | 520 | |
HR 8799 | A5V | 129 | 75 | ( Preprint at exoplanet.eu ) |
51 Ophiuchi | B9 | 131 | 0.5–1200 | |
HD 12039 | G3–5V | 137 | 5 | |
HD 98800 | K5e (?) | 150 | 1 | |
HD 15115 | F2V | 150 | 315–550 | |
HR 4796 A | A0V | 220 | 200 | |
HD 141569 | B9.5e | 320 | 400 | |
HD 113766 A | F4V | 430 | 0.35–5.8 | |
HD 141943 | ||||
HD 191089 |
The orbital distance of the belt is an estimated mean distance or range, based either on direct measurement from imaging or derived from the temperature of the belt. The Earth has an average distance from the Sun of 1 AU.
|
|